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Abstract

We present aovelmethod to ainique problem solved in
anewway: we use vision technology to aid in the process
of vision research. Specifically, we developianovative
algorithm to determine the presence of our advisor. By cre-
ating a system that will identify when our advisor’s office
door is open, we can attempt to corner him only when nec-
essary, remaining at our desk for longer periods of time to
do actual work[8]. We present a synopsis of the vision lit-
erature to date along with a working algorithm tested in two
environments.

Keywords David Forsyth

1. Introduction

We study the problem of computer vision because a care-
ful observer will note that the problem of vision is obviously
useful. [Some more vacuous statements]
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Figure 7.The precision recall curve for the classifier at the alter-
nate office. Since the door is never open in the dataset, all methods

As careful students in the field of computer vision, haye comparable resuits.

we adopt the following techniques originally conceived by
other authorsT, 2, 3, 4, 5]:

1. Shop for Datasets In many cases, the general prob-
lem is too hard — maybe even unsolvable. Current
methods don’t work well, and, even worse, your partic-
ular algorthm does not work well with the traditional
datasets. Solution: find a better dataset. Surf the web.
Or, better yet, make your own. Comparisons become
difficult if nobody else has seen your data. (This is an
important step of the grad student flow chart and re-
sune building, outlined in Figuré)

2. Incorporate Non-Silicon Intelligence We affection-
ately refer to this line of work as “Grad Student in the
Loop”. Most algorithms work better if a grad student

3. Ignore Theory. Elegant solutions to research prob-
lems provide long-term employment for theoriticians.
However, we focus on immediate tasks, and thus ig-
nore theory. Often, a threshold or a hard-coded con-
stant can eliminate many hours, days, months or even
years of mathematical contemplation.

4. Abuse Theory. Often, reviewers dislike hard coded

constants. To please them, we seek to make an overly
complicated theoretical model, then agressively sim-
plify to justify our kludge. [REF Nicolas’ figure]

can analyze the errors on the test set and make modifi-2, Results

cations of the original code. We outline this technique
further in Figure2.

[Insert Results Here]
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Figure 3.Ah, the life of a grad student. This life shows the typical progression of a research project. First, we find a dataset. Theg 9
depending on the specific characteristics of the dataset, we pick an application, select features, make a classifier, validate and publ|259 L

This entire process is driven by the final step: a bullet on a ré&sum
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Figure 4.Shopping for datasets: our advisor happens to have multiple offices. In this case, our detection task becomes significantly easier

—in the course of data collection, we never observed an open door. See/figueeprecision recall curve. This figure clearly shows that

our method is scale and aspect invariant.
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m feeding "baby eating
bishop bath wells” to Google’s popular image search engine. Orrigigt is a randomly chosen picture of our advisor. Using Lowe’s
SIFT features to detect keypoints (shown with black stars), we find that corresponding keypoints match perfectly. In fact, our results aré
independent of the choice of keypoints and similarity metric, suggesting that (1) our face detection system is robust, and (2) our advisot@s
the Baby-eating Bishop of Bath and Wells. 401
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Figure 6.We build a classifier for the state of our advisor’s primary office door by thresholding the intensity of a single pixel. Typically,,
when the door is open, the intensity is brighter than when the door is closed. Gaitthve identify the pixel and on threght, we show the 4
precision recall curve. Our method is not perfect — our method makes errors when the door is open and the lights are out. We believe thzaz

this method is general: most advisors have doors that look different from the inside of their office. 227
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