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Abstract

We apply computer vision methods to the task of automatically predicting human attractiveness
from frontal face images. A dataset of thousands of images and corresponding scores was obtained
from a popular website that asks viewers to rate the attractiveness of the people appearing in the
images. Using a combination of radial basis functions and specialized feature detectors, we achieved
moderate success in estimating female attractiveness. However, male attractiveness proved more
difficult to predict. We believe significant improvements are possible through future development of
new feature types.

1 Introduction

In this project, we create an automatic predictor of facial attractiveness. Our methods involve linear
regression on features extracted from the data set. We approximated factors relating to attractiveness
using readily available vision techniques. These factors are based on research in evolutionary and social
psychology.

1.1 Psychology of Human Attractiveness

Human facial attractiveness has long been a topic of study in psychology. Although no absolute metrics
have been cited, there has been empirical analysis as to the importance of certain attributes.

Evolutionary psychology points to three major characteristics that contribute to attractiveness cross-
culturally for both genders: symmetry, averageness, and nonaverage sexual dimorphic features. All three
reflect a healthy development, and thus a high probability of desirable genetic information. Bilateral
symmetry, given by the similarity between the left and right sides of the face, may be a direct effect of
an individual’s ability to defend against parasites and environmental change during development, and is
thus a good indicator of “good genes”. (In particular, heterozygosity [3].) There is some debate as to
whether symmetry by itself is an indicator of attractiveness, or whether its existence highly correlates
with the existence of other attractive features. In a test where subjects were asked to rate images of
only half a face, thus removing all symmetry cues, there was still a relationship between the ratings and
the faces which, when viewed in whole, were more symmetric.

Averageness is another characteristic which is difficult to dissociate from other features such as
symmetry. Directly, averageness may again indicate heterozygosity and parasite resistance. Studies
show that computer-generated composite faces are usually rated higher than any of the individual faces.
The composite, however, blurs features, resulting in smooth skin and the disappearance of features which
may lead to asymmetry. In addition, moving some features of the average face away from the average
may result in a more attractive face, especially if those deviations imply desirable hormone markers [10].

The features relating to hormone markers, i.e. nonaverage sexual dimorphic features, are different
for each gender. High levels of testosterone in males and estrogen in females are toxic, and thus the
more exaggerated the features affected by the hormones, the more healthy the immune system of the
individual. (High levels of estrogen also signify fertility in women.) Examples of masculine features
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in men are: large eyebrow ridges, large jaw and lower face, and cheekbones. Feminine features are:
prominent cheekbones, smooth skin texture, high eyebrows, thick lips, and a childlike jaw.

Interestingly, while extremely feminine faces are considered attractive, women vary in their preference
of masculine male faces. Many studies seem to show that women prefer more masculine faces when they
are most likely to get pregnant, but otherwise would prefer a less masculine mate. This implies that
they desire offspring with desirable genes, but since testosterone is often linked with antisociality and
a decreased likelihood of actually helping to take care of the child, they would prefer a more feminine
partner [6].

Other attractive features in women may include: narrower facial shape, less fat, narrower nose,
thinner eyelids, and a slightly larger distance between eyes. Additional attractive male features are:
narrower facial shape, less fat, broader top of face, no wrinkles between the nose and the corner of the
lips, and fuller lips. It hasn’t been fully studied, however, how these features relate to genetic desirability,
and how much they’re culturally influenced [2]. There are also some studies relating the placement of
facial features on the face to attractiveness which show that low or medium height of features is more
desirable than high placement. Plus there are features with more sociological implications, such as
gaze [4].

1.2 The Dataset

Our dataset consists of images and scores extracted from the website hotornot.com [5]. Using a we-
bcrawler to download images from the website, we collected over 30000 images split roughly evenly
between the two genders. Figure 1 shows a snapshot of the hotornot website. We extracted the follow-
ing items: the image of the subject being rated, the average score for the image, and the number of
votes. The website allows users who post images to self categorize based on two criteria. Because most
users (and thus most of the images) are young, we limited our work to the male and female 18 to 25
year old categories. While we were able to download 30,000 images over the course of several days, the
website claims to have had 7 billion votes and 9.1 million photos submitted.

We pruned this dataset based on a number of metrics:

• Quality of face detector response. The faces were found using the Mikolajczyk-Schmid face
finder [7]. By selecting only images where the face detector responded highly, we can be rea-
sonably sure that the face had been found accurately. Scores of 10 or greater were used.

• Size of face in image. Faces at least 100 pixels (and less than 400 pixels) on a side were selected
so that the future steps would have reasonably high resolution images to process.

• High rectification score. Rectification code based on [1] and [8] found important facial features to
rectify all of the faces to a common view using an affine transform. Only reliable rectifications
(with scores above 2.5) were used. Again, this is mostly to guarantee that subsequent processing
will have reliable images with which to work.

• More than 50 votes. According to the hotornot website, “Scores do not tend to change much after
as few as 30 to 50 votes.”

From these pruning techniques, we reduced our dataset to approximately 4000 images, divided almost
evenly by gender. Most of the experiments presented in this paper are drawn from the rectified face
images, as opposed to the original images. The rectified images were all downsampled to 86 pixels by
86 pixels with three color channels.

1.2.1 Understanding the Dataset

Before attacking the problem of creating an automatic method to rate attractiveness from images, we
try to gain an understanding of the nature of the dataset itself. Figure 2 shows 16 randomly chosen
rectified faces from the male 18-25 category.

To complicate matters slightly, the dataset contains a huge gender bias. The scores associated with
male subjects tend to be much higher, with a lower variance: male subjects received an average score of
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Figure 1: An example page from the website www.hotornot.com. Note that this includes several key
pieces of information for building a dataset: an image of the person, their average score and the number
of votes that they received.

8.4 with a variance of 0.9 while female subjects received an average score of 7.4 with a variance of 2.2. A
histogram of the score by gender is presented in Figure 3. In addition to the bias in the actual scores, the
number of votes received by subjects in the two categories differs significantly. Female subjects received
1250 votes on average while male subjects received 420 votes on average.

To illustrate that rectification worked well, we combined all of the images in the rectified dataset
(separately for each gender). The pixel by pixel averages are shown in Figure 4. To characterize the
dataset even further, we sorted the images by score, and did a pixel by pixel average for the highest and
lowest scores. Results are shown in Figure 5.

1.2.2 Validating Assumptions

There is some concern that face finding, rectifying and downsampling could remove the important
information contained in the dataset. In order to gauge this, we generated random pages of five images
with two possible scorings: the real scores or scores randomly chosen from the dataset. Our local expert
was able to correctly label 27 of 28 such pages (taken from the female 18-25 group).

2 Statistical Techniques

Since the goal of this paper is to build a program that can predict human attractiveness scores, it is
important to define a reasonable error metric. Our metric is the Mean Squared Error Ratio (MSER):

MSER =
1
N

∑N
i=1(Pi − Si)2

1
N

∑N
i=1(S − Si)2

=
∑N
i=1(Pi − Si)2∑N
i=1(S − Si)2
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Figure 2: A sample of 16 typical faces for males in the age range 18 to 25. These images have been
rectified as described in the text.

Figure 3: A histogram of the scores received in the rectified dataset. Note that the distribution differs
by gender.

Figure 4: The average male (left) and female (right) faces. These are pixel by pixel averages on the
rectified images.
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Figure 5: The average attractive (right) and unattractive (left) male (bottom) and female (top) faces.
The images on the right reflect the average taken over the 40 images with the lowest attractiveness score
and the images on the right reflect the average taken over the 40 images with the highest attractiveness
score.

where Si is the score of image i, Pi is the predicted score for image i and S is the average score over
all images. In this metric, a 1 indicates that the prediction algorithm does nothing and a 0 indicates
perfect prediction.

2.1 Predicting the Score

The basic prediction algorithm for this paper will be a linear combination of the features. This can
expressed as follows:

Pi = α+
M∑
f=1

βfxf,i

where f indexes features in the array of features xf,i. Note that the equation is linear in the features
and uses the same coefficients βf and α for all images. Given example images, the optimal coefficients
can be found using least squares:

α =
1
N

N∑
i=1

Si

β = (X>X)−1X>

Here the xf,i have been merged into the matrix X, the βf into β
Least squares, however, leads to overfitting. To prevent overfitting, we can do a penalized least

squares that penalizes the square of the magnitude of regression coefficients (aka Ridge Regression).
This is useful, because large coefficients tend to occur when the regression is magnifying noise. The
solution for α remains the same, but for β:

β = (X>X + λI)−1X>
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Figure 6: An example of ridge regression performance on some of the better features in the female
dataset. Even at the optimal value of the penalty term, there is a large gap between the minimum test
error and training error, indicating overfitting.

Figure 6 shows the results of ridge regression on a sample set of parameters taken from the female
dataset. The overfitting is still non-zero, so we tried another technique to minimize the overtraining
called the lasso. Instead, this technique penalizes the sum of the absolute values of the regression
coefficients. The details won’t be discussed here, but can be found in [11]. The technique reduces to an
iterated quadratic program. Experimentally, this technique was found to be inferior to ridge regression
(see Figure 7), but had the significant upshot that it produced a large number of 0 coefficients.

By using the lasso to pick important coefficients and then ridge regression to pick the actual values
of the coefficients, the overfitting was reduced while maintaining a roughly constant error. The resulting
ridge regression is shown in Figure 8.

3 Fishing for Human Attractiveness

3.1 Simple Cues

Our first test of the dataset was to check how various characteristics of imaging and voting affected the
scores. Figure 9 shows some ridge regressions on these simple cues. When the number of features was
incredibly small, quadratic terms were introduced. The numbers displayed in the table are the Mean
Squared Error Ratio (MSER) on the test dataset. Numbers for the training set were typically a few
percent better.

3.2 Kernelizing

One common method for finding features in a high dimensional dataset is to use radial basis functions
to represent how the data varies with respect to other elements of the dataset. The basic expression for
a radial basis function is:

Ki,j = e−
‖Ii−Ij‖

σ2
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Figure 7: The lasso regression also shows problems with overtraining.

Figure 8: Ridge regression results when using only features that were important in the lasso regression.
The number of features was reduced from 257 to 128 with little increase in test error. The regression is
much less sensitive to the value of the penalty parameter.

Feature Male MSER Female MSER
number of votes 0.965 0.98
face size 0.972 0.97
rectification score 1.00 0.99
image size 0.988 0.98

Figure 9: Ridge regression results for several imaging and voting cues.
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Kernel Feature Male MSER Female MSER
Average Faces 0.995 0.93
60 Random Faces 0.969 0.93
200 KPCA coeffs 0.953 0.86
Upper Cheek 0.997 0.94
Lower Cheek 0.996 0.98
Left Eye 0.989 0.97
Mouth 0.993 0.94
Nose 0.995 0.97

Figure 10: Some kernelizing results. The last five (Upper Cheek, Lower Cheek, Left Eye, Mouth and
Nose) were created by selecting 50 images from the dataset at random and then kernelizing the rest of
the dataset with respect to these images. All values computer on a test dataset.

A common technique is to kernelize a subset of the dataset, and then use principle components to
pick the highest variance vectors. When kernelizing faces, we mask the face to exclude regions in the
image that are likely to be distractors.

In addition to kernelizing the whole face, we kernelized separate regions of the face. In these exper-
iments, a small region of each image was selected based on a reasonable guess of importance. Results
in Figure 10 show that different regions of the images show varying ability to predict the attractiveness
score. We thought that searching a local window around the region for the optimal match would improve
results, since the faces were not rectified perfectly (the center of the eye varies by several pixels between
images). Experimental work showed that this did not improve prediction.

In addition to kernelizing against images that were in the dataset, we also kernelized against the
three average images presented in previous sections: the average of all faces, the average of the most
attractive faces and the average of the least attractive faces.

3.3 Gender

In order to check whether the degree of femininity and masculinity correlated with attractiveness, we
decided to gender classify the faces and give each a score based on the distance from the gender border.
Using a radial basis function network to first kernelize the data, we implemented the [9] support vector
machine classification method. Then we performed linear regression on the gender score for each image.

3.4 Skin Detection

In comparing the attractiveness scores of the images to our personal opinions, we noticed that sometimes,
especially for the females, there was a direct correlation between the score and the amount of skin they
were showing. We decided a skin detector would thus be beneficial to our predictor. Specifically, we
wanted to detect the number of skin pixels in the original image (not just the rectified face).

We first tried a histogram based approach, which discretized the image into 32 bins, and, for each
pixel in the image, indexed into 2 histograms with the bin placement of the R, G, and B for that pixel.
The histograms stored how many pixels in different ranges of the colorspace were skin pixels and non-skin
pixels respectively. If the ratio of the value given by the skin histogram to the non-skin histogram was
greater than some constant threshold, it would be marked as skin.

In practice, this method appeared to be greatly affected by background color and lighting, so we
decided to try a different, threshold based approach using both the rectified face and original images.
First, we converted all images from RGB to LAB, since we thought that comparing pixel values over a
uniform colorspace would be more beneficial.

In the rectified image, we were able to define a constant patch location that was universally the cheek
(and thus contained only skin pixels.) We then found the mean of the pixels in the patch (separately
for L, a, and b) and created a distance matrix containing the absolute value of the difference between
each pixel value and the mean (again, separately for L, a, and b.) We did this so that we could tweak
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Figure 11: 16 original images, pre-face finding and rectification.

the threshold differently depending on how different the skin pixels were in the patch, hoping that if the
patch itself had a lot of variation, that meant that the image itself had a lot of variation, and we could
be more tolerant. More specifically, we added the L, a, and b components of the distance matrix for each
pixel, and set the threshold to be some constant times the maximum sum. We created a similar distance
matrix for each pixel in the original image, and those pixels whose L, a, and b distances summed to less
than the threshold were considered skin pixels.

This method also proved to be not as robust as we would like, but it seemed to be proportionally
accurate across images. Figure 11 shows 16 original images, and Figure 12 shows the detected skin in
those images using the threshold method.

3.5 Eye Color

In order to determine whether eye color was correlated with attractiveness scores, we designed a mech-
anism for extracting a model of the eye color from the rectified face images. Although the rectification
procedure transforms each image to place the eyes in approximately the same location, it was necessary
to further localize the position of the pupil. Rectification assisted this process only by restricting the
general region in which the eyes could be located. Determining the exact pupil location within the eye
region consisted of a two step process. First, we computed the probability that each pixel in the eye
region was a skin pixel. Second, we searched for an assembly of pixels in a circular shape that were
different from the skin color.

Skin color was modeled by extracting patches from the cheeks of the rectified face as shown in Fig-
ure 13(e-f). The algorithm converted these patches from RGB colorspace to the uniform Lab colorspace.
Skin color was defined by the mean and covariance of the pixel values in Lab colorspace. Using this
Gaussian model for the skin, the probability density of matching the skin color was computed for each
pixel in the eye region. Taking the log of the result and convolving it with a mask for the eye gives, for
each pixel, an estimate of the log probability that an eye region centered at that pixel is actually skin.
The locations within the left and right eye regions that minimize this distribution are the maximum
likelihood estimates of the pupil positions. Figure 13(b) illustrates a typical result of the pupil localiza-
tion process. Given the pupil position estimates, eye color was modeled by a Gaussian distribution with
mean and covariance determined by the pixels in an annulus around each pupil. Figure 13(d) shows
the mean eye color (transformed back into RGB colorspace) extracted from the original face image in
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Figure 12: Detected skin in the 16 original images in Figure 11.

Figure 13: (a) Rectified face image. (b) Localization of pupils (marked with red x’s) within the eye
region using our eye model. (c) Skin sample from cheeks used for filtering out skin pixels in the eye
region. (d) Eye color derived by applying a part mask around the pupil locations. (e) Average skin color
derived for the skin model.
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Figure 14: (a) Rectified face image. (b) Squared difference of color at each location from that at its
mirror location. Color differences are computed in the uniform Lab colorspace. The total asymmetry
score is the sum of the squared differences over the entire face. (c) Reconstruction of face obtained by
mirroring the left side onto the right. (d) Reconstruction of face obtained by mirroring the right side
onto the left.

Figure 13(a).
Unfortunately, including the mean and covariance for each face’s eye color as parameters in the

regression procedure used to predict scores offered no significant benefit. This could indicate that eye
color is not correlated with attractiveness or that the eye regions in much of the dataset were not of high
enough resolution to influence the rankings.

3.6 Gaze

We wanted to test the gaze of the person, so we took the rectified images, converted them to grayscale
so that color information wouldn’t cloud gaze information, and found a constant patch location which
universally cut out the eyes. Then, instead of using the rectified image, we performed kernel PCA on
the patch.

Because the rectification wasn’t perfect, and the center of the eye wasn’t in the same place for all
images, this method encoded more than just the gaze. We decided that was fine, however, since we were
trying to find all relevant features anyway.

3.7 Facial Symmetry

As previously discussed, research on human psychology suggests symmetry may be an indicator of
attractiveness. We compute a simple symmetry statistic for each rectified face by measuring the mean
color difference between corresponding pixels on the left and right sides of the face as shown in Figure 14.
Symmetry was computed using a central region of the rectified image that consisted entirely of face pixels.
Supplying the regression procedure with the mean and covariance of the symmetry for each face did little
to improve prediction of attractiveness. It is possible that a feature-based approach that uses ratios of
distances between various facial features on corresponding sides of the face would be more successful.
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Figure 15: Detection of the sides of the face at the same vertical level as the mouth. The face boundaries
across from the mouth are marked by red x’s. We believe measuring distances between facial features
(such as the length across the face) may allow better prediction of attractiveness scores in the future.

4 Future Work

As illustrated by Figure 10, kernelizing on the entire face or various face regions results in severely limited
prediction accuracy. Furthermore, while our custom feature detectors were able to reliably extract eye
and face color models, as well as symmetry scores, these features also offered only minimal predictive
power. Part of the difficulty encountered when using the color features may be a result of large variance
in lighting conditions and color quality across images in the dataset. A larger problem may be that all
of our current feature types only weakly encode the characteristics by which people rate attractiveness.

Therefore, the most promising direction for future work is the development of new feature descriptors
that better capture these characteristics. Since psychological research points to facial shape as a key
indicator of attractiveness, explicit computation of facial dimensions may produce features more closely
linked to attractiveness. In particular, the relative length and width of the face, as well as the distances
between and sizes of major facial components (such as the eyes, nose, lips, mouth, forehead, cheeks,
and chin) could be correlated with face scores. Initial work on determining distances between face
components is shown in Figure 15 in which, we detect the width of the face across the mouth.
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