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Abstract

Cloth is difficult to simulate because it forms small, complex folds.

These folds make cloth configuration difficult to measure. Partic-

ular problems include fast motion (ruling out laser ranging meth-

ods), the necessity for high resolution measurement, the fact that

no viewing direction can see into the folds, and the fact that many

points are visible with either small baseline or in only one view.

We describe a method that can recover high resolution measure-

ments of the shape of real cloth. Our method uses multiple cam-

eras, a special pattern printed on the cloth, and high shutter speeds

to capture fast motions. Cameras are calibrated directly from the

cloth pattern. Folds result in local occlusion effects that can make

identifying feature correspondences very difficult. We build cor-

respondences between image features and material coordinates us-

ing novel techniques that apply approximate inference to exploit

both local neighborhood information and global strain informa-

tion. These correspondences yield an initial reconstruction that is

polished using a combination of bundle adjustment with a strain

minimization to get very good 3D reconstructions of points seen

in multiple views. Finally, we use a combination of volume oc-

cupance cues derived from silhouettes and strain cues to get very

good 3D reconstructions of points seen in just one view. Our ob-

servations provide both a 3D mesh and a parameterization of that

mesh in material (or, equivalently, texture) coordinates.

We demonstrate that our method can capture fast cloth motions

and complicated configurations using a variety of natural cloth

configurations, including: a view of a bent arm with extensive,

complex folds at the elbow; a pair of pants moving very fast as

the wearer jumps; and cloth shuddering when it is hit by dropped

coins.

1 Overview
Cloth modelling is an important technical problem, because peo-

ple are interesting to look at and most people wear clothing. Tra-

ditionally, cloth models have been built using simulation, but re-

cent work has started to focus on capturing cloth in the real world

[13, 9, 16, 4]. This body of work views the task as one of structure-

from-motion — using multiple views of a 3D objects to reconstruct

its shape. By printing a color-coded pattern on the cloth, the recon-

struction process becomes easier, and these papers show that sys-

tems capable of reconstructing large garments are reasonable for

the task. We provide methods to deal with the technical challenges

that limit current approaches: recovering folds in considerable ge-

ometric detail and handling the complex geometry of real garments

that moves quickly. Like previous methods, we handle reconstruc-

tion frame by frame and focus our attention on single frame recon-

struction. Viewing the problem from the single frame perspective,

capturing fast motion is easy: large amounts of light and fast shut-

ter speeds create crisp images that can be processed using the same

techniques as slower movement.

There are four reasons that good single frame reconstruction is

hard. Reconstructions need to be at high resolution to capture the

relatively small folds that are so characteristic of cloth. To obtain

this high spatial resolution, we print a pattern of thousands to tens

of thousands of fine colored triangles. Each triangle in this pat-

tern is a different color, though some color differences are subtle

enough that color alone is insufficient to identify the triangle.

This very large number of triangles means determining corre-
spondence between triangles in a given image and triangles on the

pattern (and so, by extension, between images) is difficult. There

is a second, very important, difficulty. We cannot simply use the

neighbors of a given triangle to identify it (as earlier methods have

done), because small folds in the cloth cause triangles to disappear

in an image (see figure 2, which shows a fold about the scale of

a single triangle across). Instead, we rely on two novel strategies:

First, we use careful color processing to identify triangles with the

minimum of ambiguity (section 3). Second, we use a probabilis-

tic inference method to enforce two constraints: no triangle on the

cloth appears twice in any single image, and triangles that are close

together on the cloth cannot be far apart in the image.

This is because cloth admits only limited strain. Cloth tends

to resist even small strains quite strongly, and at larger strains the

fibers in the weave lock and further strain is resisted extremely

strongly; this property is an important source of stiffness in cloth

simulation. It provides a powerful cue that has no analogy in con-

ventional structure from motion.

Measurement noise is inescapable, not least because pattern el-

ements that can be localized to very small fractions of a pixel are

small and tend to be easy to miss. Because many points are seen

with a relatively small baseline (figure 4 explains why), small errors

in localization can lead to large errors in 3D and so to a strained re-

construction. Remarkably, as figure 5 and section 2 show, adding a

strain term to bundle adjustment results in a 3D reconstruction with

a plausible strain distribution at almost no increase in reprojection

error.

Finally, there are many points seen in only one view. This can-

not be resolved by simply adding large numbers of cameras, be-

cause most such points would be viewed from so short a baseline

as to yield no depth measurement (figure 6). This typically occurs

in garments such as pants and shirts where one appendage occludes

another in most views. In practical systems, roughly one third of

the points are observed in one view (figure 12). We integrate sil-

houette cues with single view and strain constraints to reconstruct

points seen in a single image (section 4). Experimentally, we have

found the accuracy of these points to be very good: with a median

error of 3.3 mm on a pair of pants (roughly 0.3% of the object size).
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Figure 1: High resolution meshes of cloth can be captured from multiple images of an actual piece of cloth. We print a pattern on the

cloth that uses an unlimited number of colors to build a set of features that can be easily recognized in challenging conditions, such as

the folds in the elbow of this figure. The folds in the crease of the elbow on the right are the shape of actual folds in real cloth at a level of

detail that is not easily simulated. This reconstructed mesh is made of 7,557 vertices comprising 15,036 triangles and has a reprojection

error (a measure of the alignment between the model and image data) of 0.23 mm (230 µm) or 0.05% of the object size.

Figure 2: The biggest difficulty in capturing cloth is folds – where context makes it difficult to determine what is going on. We build

reconstructions from correspondences between views by identifying the unique identity of each triangle viewed in an image. We use the

context of each triangle to decode its identity: in flat regions, the local structure is visible and the process is simple. In folded regions,

however, errors are inevitable and we must use strain cues to determine the identity. The original image in this example (a), has folds

that occlude many triangles. Our link structure (b) labels triangles that are neighbors in the image. While neighbors in flat regions of the

image are neighbors on the surface of the cloth, on the fold the links are incorrect. Using belief propagation (section 3), we produce the

accurate labeling depicted in (c) and (d). Each point drawn on the image (c) corresponds to a point drawn in the domain of the cloth (d).
We have correctly identified triangles where the fold has disrupted the neighborhood structure and can identify what portions of cloth

are missing from view.
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Figure 3: Fast motions, such as the ripple of cloth after a sudden impact with a coin, are easily captured using bright lights and a fast

shutter speed. The cloth is draped over a shallow bowl and the coin lands in the second frame. The frames shown are taken 42 ms apart

(or 1/24 of a second) — just how quickly the folds from impact appear, ripple through the cloth and then disappear. However, the result

of the impact has a lasting change: the folds along the top start as two separate folds but merge into one on impact. The dynamics of this

motion are too fast to be captured by a laser range scanner.

1.1 Background
There is a substantial literature on cloth modelling; only a superfi-

cial introduction is possible in space available. Cloth is difficult to

model for a variety of reasons. It is much more resistant to stretch

than to bend: this means that dynamical models result in stiff dif-

ferential equations (for example, see [2, 18]; the currently most

sophisticated integration strategy is [6]) and that it buckles in fine

scale, complex folds (for example, see [5]). Stiff differential equa-

tions result in either relatively small time steps — making the sim-

ulation slow — or in relatively heavy damping — making the cloth

slow-moving and “dead” in appearance. Cloth has complex inter-

actions: it collides with itself and rigid objects; it is driven by forces

that are hard to model, including human motion and aerodynamics.

Collisions create difficulties because the fine scale structure tends

to require large, complex meshes, and resolving collisions can be

tricky; for example, careless resolution of collisions can introduce

small stretches (equivalently, large increments in potential energy)

and so make a simulation unstable (for example, see [3]). A sum-

mary of the recent state of the art appears in [11]. While each

of these issues can be controlled sufficiently to produce plausible

looking simulations of cloth, the process remains extremely tricky,

particularly for light, strong cloth (e.g. woven silk), where the dif-

ficulties are most pronounced.

Attempts to motion capture cloth probably date to [8], who mark

surfaces with a grid and track the deformation of elements of this

grid in the image. This work does not report a 3D reconstruction,

because the pattern of elements is periodic, meaning that one would

have to solve a difficult correspondence problem to obtain a 3D re-

construction. Guskov, Klibanov and Bryant give views of a 3D

reconstruction in real time, obtained by printing square elements

with internal patterns on the surface, estimating local homogra-

phies at each element, then linking these estimates into a surface

reconstruction [9]. The resulting surfaces — for a hand, an elbow,

and a T-shirt — are fair but noisy. These internal patterns limit the

size of the cloth that can be recovered and don’t allow measure-

ments of folds with complicated occlusion relationships. They do

not use strain constraints.

[12, 13] use a calibrated stereo pair and SIFT feature matches

to build a 3D model. They observe that one can obtain a param-

eterization of this model — which is essential for retexturing —

by matching to a flat view of the cloth. Because they use features

with structure at fine spatial scales, there are difficulties caused by

motion blur, which reduce the accuracy of the match. Their re-

constructions are limited by the region viewed by two cameras and

they do not handle small folds or significant occlusions. Use of

strain constraints is limited.

[15] obtains better surfaces by using optical flow predicted from

a deformable model, with matches constrained to produce the

correct silhouette. Again, occlusions and complicated folds are

missing. [16] use a pseudo-random pattern of colored circles on

custom-made garments to reconstruct both a parameterization and

geometry. There method is useful for large sections of relatively

flat cloth (they separately show a skirt and a shirt on a subject hold-

ing up their arms to prevent occlusion), but they choose a cloth that

doesn’t reveal fine scale folds and constrain their subjects to pre-

vent significant occlusions. Again, their method does not use strain

constraints. We generalize their color coded detection method to

enhance detection of folds and add volume cues and strain con-

straints to make the system useful on realistic cloth. Instead of five

colors, our pattern uses an unlimited number and contains struc-

ture useful for auto-calibration. Second, our approximate loopy

belief propagation is a more general form of their seed and growth

method – allowing much higher detection rates in complicated ge-

ometry.

2 Multi-View Reconstruction
Motion capturing cloth is fairly clearly a structure from motion

problem. The area is now very well understood, with compre-

hensive reviews in two excellent books [7, 10]. Though often

combined, structure from motion can be broken into two sub-

problems: determining the location of the cameras (calibration)

and reconstructing the 3D locations of the points from multiple

views. We calibrate with a method that uses points and normals

to build an orthographic calibration, then enhance this model to

include perspective effects [1]. While there are many choices of

calibration methods, this method has the advantage that it does
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Figure 4: Because we have a small number of views of each trian-

gle, minimizing the reprojection error alone only produces an ac-

curate mesh when viewed from similar viewpoints. Images (b) and

(d) are rendered views of the reconstructed mesh (textured with

a frontal view of the flattened cloth) taken from viewpoints similar

to the original image (a). However, without strain reduction, novel

views do not exhibit cloth-like structure. The reconstructed mesh

in image (c), produced by minimizing reprojection error alone, is

rendered from a view significantly different from all the original

cameras. Note that this results in significant variance in the mesh

— indicated by large variations in edge length. Image (e) shows a

similar rendered view of a reconstructed mesh produced by simul-
taneously minimizing reprojection error and strain (section 2.1).

Now, the structure of the mesh is more realistic and true to the

original image data.

Figure 5: Strain reduction dramatically cuts down on strain in the

mesh while preserving agreement with the image data. Using the

data from figure 1, the reprojection error (the agreement between

the model and the image data) increases a very small amount (10

µm) but creates a substantial reduction in strain. The red lines

indicate a strain of 10% – an amount used in simulation as a typical

maximum. We physically measured a maximum strain of 15% at

45◦ to the grain of this particular polyester cloth by stretching it to

the point that there was a concern that the cloth would tear.

not require additional equipment (a calibration object) and that it

tends to produce accurate calibration for cloth. Once the cameras

have been calibrated, 3D reconstruction requires correspondence

between frames. Like previous methods, we print a pattern on

the cloth that allows easy identification, then use these correspon-

dences to determine 3D locations.

However, recovering the shape of moving cloth is not like the

traditional model of structure from motion: the number of views

of any one configuration is small and the number of points is very

large. One expects to have significantly fewer cameras than a typi-

cal structure from motion setup (we use six cameras in most cases;

tens of cameras would be practical, but hundreds of cameras would

offer no improvement because baselines would be too short). Many

of the points seen in multiple views may be seen with a short base-

line (figure 6), and so depth measurements may be inaccurate (we

discuss points seen in only one view in section 4).

2.1 Combined Strain Reduction and Reconstruc-
tion

Now assume we know correspondence between views of points

seen in two or more views (section 3 describes how we obtain

correspondence). Reconstruction is not straightforward, because

many points are seen with short baselines. However, we can ex-

ploit cloth’s resistance to strain to improve the reconstruction.

Standard bundle adjustment proceeds by minimizing the repro-

jection error to polish both 3D locations of reconstructed points

and camera parameters. We improve upon this by penalizing large

strains, after an idea due to Provot [14]. Small strains in cloth re-

sult in relatively small forces, but slightly larger strains can produce

very large forces. Because we have recovered a parameterization,

we can observe strains in the recovered cloth model. We create a

global cost function that combines the reconstruction error in each

camera with the strain on the mesh (defined by a Delaunay trian-

gulation of the points in the cloth domain). Using ‖e‖ as the edge

length, ‖er‖ as the rest length, Er(p) as the reconstruction error and

ks as the weight of strain relative to reconstruction error; our cost

function is defined as:

strain(e) =
{

(‖e‖−‖er‖)2 if ‖e‖ > ‖er‖
0 otherwise

cost = ks ∑
e∈edges

strain(e)+ ∑
p∈points

Er(p)

Because optimizing this objective function involves simultane-

ously solving for thousands of variables, we adopt a multi-stage

approach to reconstructing the 3D points. First, the points are re-

constructed without any strain information because each 3D loca-

tion can be computed independently. Because many observational

errors occur at the scale of the large triangles, we minimize a coarse

scale version of the global objective function to produce a start-

point for the final optimization problem.

Even with a good starting point, this large optimization problem

is intractable without careful attention to detail. First, we reduce

computation in numerically computing the gradient by exploiting

conditional independence between points on the surface that are

significantly far apart. Second, by exploiting the connectivity struc-

ture of the surface, we constrain numerical estimates of the Hessian

to a sparse matrix form (c.f. [19]).

The combined strain reduction, point reconstruction creates re-

construction results that are significantly better, yet has little effect
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Figure 6: In scenes with multiple cloth surfaces (such as a pair

of pants, viewed as a horizontal slice above), occlusion can make

multi-view reconstruction difficult. In this case, the surface point

can only be seen from a narrow range of views. To use multi-view

reconstruction techniques, cameras must be placed very close to-

gether — implying large numbers of cameras. Even worse, nearby

cameras exhibit the baseline problem: the closer together the cam-

eras, the worse the estimate of the distance from the cameras. To

account for this, we use integrate volume cues with single view

reconstruction in figure 8.

on the reprojection errors: typically an increase of less than a frac-

tion of a pixel (in figure 5, this reprojection error increase is 0.03

pixels) Because the most accurate views of a triangle are typically

separated by a small baseline, small errors in localization become

large errors in depth estimation. The strain reduction only needs to

have small effects on the reprojected location of the point to dra-

matically increase the quality of the reconstructed mesh, as shown

in Figure 4.

3 Correspondence
Multi-view reconstruction uses correspondence between views to

reconstruct the 3D location of a point on the surface. Instead of

computing correspondence between views, we compute correspon-

dence between each image and the parametric domain. This has

several advantages: (1) it automatically provides a parametric rep-

resentation of the resulting surface for use in rendering, (2) it al-

lows us to compute strain on the mesh, and (3) it is a simple way to

encode the number of views available for each point in each view.

Our parametric domain is constructed as an image (or multiple im-

ages) of flattened pieces of cloth.

We print a pattern on the cloth that makes this correspondence

easier and use combine cues using an approximation to loopy belief

propagation on a graphical model to resolve the identity (paramet-

ric location) of each triangle in the image. Our model incorporates

two cues: the local neighborhood structure of the cloth, approxi-

mated by the neighbors of each triangle; and the limited strain on

the cloth. Our efforts are complicated by the unavoidable prob-

lems in image processing — some triangles are not detected and

neighboring triangles in the image are not necessarily neighboring

triangles in the parametric domain. These problems are observable

in figure 2.

3.1 Printing a Pattern on the Cloth
We print a color-coded pattern on cloth to simplify correspondence.

This general idea is not new [9, 16], but we generalize previous

Figure 7: Visual hulls can be computed from silhouette edges in

images and provide volume constraints on the resulting cloth re-

construction. The visual hull is an outer bound on the location of

the cloth.

methods by using an un-limited number of colors. Our pattern is

composed of triangles with a randomly chosen colors that are dis-

similar from their neighbors. (we choose colors in hue and satura-

tion space, disallowing colors with low saturation and forcing the

value to be 1) Triangles allow us to easily compute surface normals

for automatic calibration [1].

If the color response of the printer and camera had perfect signal

to noise ratios, the identity of each triangle could be measured by

recording its unique color. Since the printing and recording pro-

cess are not perfect, the colors are somewhat ambiguous. We use

a gaussian emission model to cover the ambiguity inherent in each

measurement.

Careful color calibration can significantly improve the accu-

racy with which colors identify triangles. As in previous ap-

proaches [13, 16], we use a frontal photo of the cloth to determine

the colors and layout. Inconsistencies between cameras, white bal-

ance settings and lights yield colors that are dramatically different

in each image (see figure 9). We perform a two stage color cal-

ibration. Using some known correspondences (generated by run-

ning the code in the next sections with de-tuned parameters), we

compute a 3x3 color transformation matrix to maximize similar-

ity. Then, we compare the hue of the resulting images to derive

a smoothed hue conversion function that maps hue in one view to

hue in another view. This color calibration procedure typically re-

duces the ambiguity between colors by a factor of 2 or 3 (one to

two bits).

3.2 Determining Triangle Identity
Triangle identity cannot be determined uniquely from color, how-

ever, despite the improved color calibration. Furthermore, the

neighbors of a triangle in an image are a helpful, but not reliable

guide to its identity, because a fold may mean that the neighbors

come from a very different region of the cloth (figure 2). There are

two reliable cues: First, any given triangle in the cloth can appear

only once in the image (exclusion), and second, triangles that are

close in the cloth cannot be far apart in the image (strain). All this

information must be incorporated to identify the triangle.

For each triangle, we make a list of possible identities and the

probability that triangle has that identity. Initially, these identities
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Figure 8: 3D locations can be computed from a single view of the

cloth by combining other cues. Using the visual hull and the ray

extending from the camera, the range of possible reconstructions is

limited to several line segments. Because the amount of strain in

the cloth is limited, the number of choices is cut down even more.

The final 3D point is chosen to be the closest point to the camera

that satisfies all constraints.

are assigned using a Gaussian emission model (the difference be-

tween image color and cloth color is a normal random variable).

For each triangle, we make a list of possible identities and corre-

sponding probabilities. Initial probabilities are assigned using the

gaussian color model mentioned in the previous section. A graph-

ical model is built on this structure, where the nodes are triangles

observed in the image. We establish two forms of edge: edges be-

tween image neighbors (for the flat regions) and edges between all

pairs of triangles that encode strain limits.

Straightforward loopy belief propagation (e.g. [20, 21]) on this

structure would not impose the exclusion constraint, and the large

number of edges would make it run slowly. As a result, we mod-

ify belief propagation. First, after an iteration of belief propaga-

tion we check for triangles that are essentially unambiguous and

fix their identity (we threshold when the most likely identity has

ten times the probability of the second most likely). The probabil-

ity that any other triangle has that particular identity is now zeroed

out for every triangle in the rest of the graph. The strain between

a pair of triangles is most likely to constrain their identities when

one of the two is known, so we use strain constraints only for those

pairs of triangles where one of the two is known. Furthermore, it

is our experience that triangles can be identified without looking at

all possible such pairs — we pick twenty, at random, per triangle

per iteration. Finally, because image neighbors are not necessarily

neighbors on the cloth, in late iterations we search over the possi-

bility that some edges are bad.

For edges that encode strain relations, we apply a simple test: if

the strain is too large (greater than 40%), then we force the prob-

ability for that identity on the unassigned triangle to zero. This

technique assumes that we treat the image as a scaled orthographic

view, and that we know the scale of the image. As part of the

calibration process, scales are estimated for each view [1]. The

assumption of scaled orthography is common in many vision set-

tings. We have detuned the strain constraint (typically, strain is

limited to 10 or 15%) to account for the possibility of some per-

spective effects and, in practice, have not observed any failures.

Figure 9: With only six cameras, it is common for points to be

seen in only one view. We can still use these points for reconstruc-

tion by confining the point to a ray and using volume and strain

constraints (section 4). In the images above, black points are de-

tected in at least two cameras while white points are viewed in

only one camera. Notice that the colors in these two images are

significantly different: they were taken using the same model cam-

eras with identical settings at the same moment in time, yet the

internal processing of the cameras yields very different colors.

This constraint is particularly effective for images that contain a

large portion of the domain — because large distances tend to rule

out more possibilities.

3.3 Image Processing
We start by converting each image to HSV, disregarding the value

and using polar coordinates to compute distances in hue and sat-

uration. To detect triangles, our code looks for uniformly colored

blobs in two stages: first regions are built by growing neighbor-

hoods based on similarity between pixels. This method is sensi-

tive to image noise and can produce oversized regions when the

color boundaries are smoothed. The second stage takes the cen-

ter of mass of each blob from the first stage, computes the mean

color and grows a region based on distance to the mean color (it

is computationally intractable to use this as the first stage of the

blob detection). The process is iterated for increasing thresholds

on the affinity value in the first stage, using the portions of the im-

age where detection failed in previous stages. Finally, blobs are

thresholded based on size.

Next, we need to determine the neighborhood relationships. For

each triangle, we construct a covariance neighborhood and vote for

links to the three closest triangles with similar covariance neigh-

borhoods. This measures distances appropriately in parts of the

scene where the cloth is receding from view and discourages links

between triangles with wildly different tilts. All links that receive

two votes (one from either side) are kept while the rest are dis-

carded.

4 Points in One View
We use silhouettes to build volume constraints that confine recon-

struction for points that are only viewed in a single camera. When

combined with strain, the reconstruction of these points is still not
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Figure 10: Many points must be reconstructed from only one view.

Our method does this using a combination of cues, described in

section 4. We evaluate the quality when reconstructing these points

by running the same method on points seen in more than one view

and measure the distance between the two reconstructions. The

histogram of distances above shows that these errors are still small

with respect to the 1m+ scale of the overall object. The median

error is 3.3 mm or roughly 0.3%. For comparison, the median re-

projection error for mutli-view reconstructions is 0.9 mm.

as accurate as multi-view reconstructions, but the errors are typi-

cally small with respect to the scale of the cloth (figure 8).

We motivate this section with the observation that real clothing

is difficult to view in its entirety — typically an arm or a leg gets in

the way. As figure 6 shows, it not uncommon for a portion of the

cloth to be visible in a small range of views. As a result, using con-

ventional structure from motion, many of these features will either

be discarded (if only seen in one camera) or poorly reconstructed

due to a narrow baseline (if seen by two cameras that are very close

together).

To capture silhouette constraints, we start with a grid of voxels

covering a volume that is slightly larger than the range of points re-

constructed using multi-view techniques (this is reasonable, since

exterior points tend to be easily recognized). Using a segmentation

of each image into foreground and background, we remove all vox-

els that project onto the background of each image. The resulting

object, known as the visual hull, is a very rough approximation of

the shape of the object (see figure 7 for a schematic example).

Points viewed in a single image are constrained to a ray in 3D

that extends from the focal point of the camera through the obser-

vation of the point on the image plane into the rest of the scene.

We reconstruct these points by projecting the point onto the closest

surface of the volume that obeys strain constraints (figure 8). Be-

cause the visual hull is a coarse approximation to the geometry, it

isn’t uncommon that the closest surface to the camera is actually on

a different portion of the object. In most cases, strain constraints

remove this possibility. Then, just like points reconstructed using

multi-view techniques, points viewed in only one camera are fed

into a combined reprojection error strain reduction optimization.

In this case, each point has reprojection error in only one image.

Our representation of the visual hull is common to other re-

construction techniques and could be expanded. For example, we

carved out voxels of the scene that appeared between the cameras

and their multi-view reconstructions, but found that in general this

had little effect on the monocular reconstruction. In the future, we

plan to run space carving on the remaining voxels to obtain bet-

ter surfaces for projecting the points. Second, we currently hand

mask the silhouette edges. In video, this would not work and an

Figure 11: A reconstruction of a piece of cloth draped over a coffee

cup reconstructed from 7 views. The folds in this model present

challenges for existing methods that require large patches of sur-

face to reconstruct points.

automated method would be required.

5 Results
Our primary contribution is one of measurement — we capture the

state of cloth in real situations and report 3D locations for each of

the points. To evaluate the quality of our results, we triangulate the

points add a new texture and render from novel viewpoints.

5.1 Mesh Construction and Rendering: Sheets
To render a sheet of cloth, we need to triangulate the points to pro-

duce a mesh and establish texture coordinates. Our texture coor-

dinates come directly from the observations: each 3D point corre-

sponds to a 2D point on the image of the frontal cloth (used pre-

viously for establishing correspondence). To compute the mesh

itself, we take all of the observed points and place them in the

parametric coordinate system. We use Delaunay triangulation on

this flattened piece of cloth and lift the mesh up to 3D.

However, the Delaunay triangulation is not perfect for our use.

It produces triangles along the edge of the mesh that are very long

and thin in 2D. When lifted to 3D, points that were almost collinear

on the plane create very large triangles with significant texture

warpage. We remove triangles on the boundary of the mesh that

have very small angles.

5.2 Mesh Construction and Rendering: Garments
While the same strategy applies to rendering garments, there are

two major problems: (1) there is no single frontal view of the cloth;

(2) ideally seams in the cloth will include triangles (alternatively,

we could produce a separate mesh for each piece of fabric used

to make the garment). To triangulate the surface, we proceed in

two steps: First, we triangulate each piece of cloth separately. This

produces a mesh that has gaps around all of the seams. Second,

we take photos of each of the seams and triangulate the seams in

a second pass. To make sure that the triangles in the first pass line
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Figure 12: When people jump about, the cloth can move about in dramatic ways. Above, the pants on a human subject in the process

of landing after a jump have folds that are unlikely to appear in static scenes (like the fin shaped fold on the back of the right leg). The

interaction between applied and inertial forces would be difficult to model without real data. This scene was captured in six cameras and

includes significant self-occlusion (one leg blocks views of the other): 1844 triangles are detected in multiple views while another 1079

are detected in only one view. Our cue combination approach to reconstructing points seen in only one view is effective: regions that

are difficult to recover (such as the inside of the leg on the right) appear realistic when rendered at several times the resolution of the

original input data.

up with triangles in the second pass, we project the points and tri-

angles from the two pieces of cloth that have been sewn together

into the image of the seam. Then, using the edges from the estab-

lished triangles, we run constrained Delaunay triangulation [17] to

produce additional triangles along the seams. These additional tri-

angles do not contain texture coordinates. It’s plausible that there

is a better strategy — this method leaves some holes in the mesh

and could be improved.

5.3 Examples
We demonstrate the quality of our reconstructions on two static

scenes (the sleeve in figure 1 and the cloth over a cup in figure 11)

and two dynamic scenes (the coins being tossed on a piece of cloth

in figure 3 and the pants in figure 12). Static scenes allow us to use

higher resolution cameras and take more images, while dynamic

scenes show cloth in positions that are unlikely in a static scene.

In both cases, the quality is very high and the results would be

very challenging to get from a laser scanner that does not produce

a parameterization (meaning no strain constraints) and cannot act

quickly enough to capture fast motion.

In figure 1, we used 10 images taken at 1500x1000 pixels to re-

construct 7557 points on the surface of the sleeve. The distance

between points on the cloth was 7.5 millimeters in a scene that was

approximately 500 millimeters in the longest direction. The aver-

age reprojection error was 0.643 pixels — which is approximately

0.23 millimeters (230 micrometers) or 0.05% of the scene size. The

resulting mesh had 15,036 triangles.

In figure 3, we show a cloth with high frequency folds due to

an impact with a coin. We used six synchronized 640x480 firewire

cameras to capture frames of the cloth at 42 millisecond spacing.

Roughly 1100 points were reconstructed per frame making a total

of roughly 2000 triangles in the resulting mesh. Reprojection error

varied per frame, but was typically about 0.5 pixels or 0.35 mm.

The cloth is 300 millimeters on a side and the distance between

points on the surface is 7.5 mm.

Figure 11 shows a cloth draped over a cup reconstructed using

7 640x480 images to obtain 2066 points. The calibration error is

0.46 pixels or 0.37 mm on a cloth that is 400 mm across.

Finally, figure 12 shows a pair of pants captured in the middle of

a jump using the same recording equipment as the coin sequence

(6 synchronized 640x480 cameras). There are 2923 points in 5768

triangles spaced 34 mm apart on the surface of the cloth. The aver-

age reprojection error is 3.3 mm in a scene that is roughly 1 meter

from top to bottom.
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